PHOTO: NTU
April 30, 2024
BY Nanyang Technological University
Advertisement
Advertisement
Outside the National Renewable Energy Laboratory’s (NREL's) Research Support Facility and its Café, there are two curious brick pavers unlike the others nearby. These pavers signify the quest of lead researcher Paul Meyer and team, including Julia Sullivan, Kyle Foster, Bob Allen, Jingying Hu, and Heather Goetsch, to unearth a carbon-negative alternative to traditional concrete.
A team of scientists from Heriot-Watt University is behind a pioneering platform named PrISMa (Process-Informed design of tailor-made Sorbent Materials) which uses advanced simulations and machine learning to find the most cost-effective and sustainable material-capture process combinations prior to implementation.
In new research published in ACS Sustainable Chemistry & Engineering, the team developed a technique for ultrafast formation of carbon dioxide hydrates. These unique ice-like materials can bury carbon dioxide in the ocean, preventing it from being released into the atmosphere.
A newly designed catalyst created by U of T Engineering researchers efficiently converts captured carbon into valuable products — even in the presence of a contaminant that degrades the performance of current versions.
Researchers have developed a low-cost, energy-efficient method for making materials that can capture carbon dioxide directly from the air.